Modulating effect of COMT genotype on the brain regions underlying proactive control process during inhibition.
نویسندگان
چکیده
INTRODUCTION Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val(158)Met polymorphism) has received increasing attention as a possible modulator of cognitive control functions. METHODS In an event-related functional magnetic resonance imaging (fMRI) study, a modified version of the Stroop task was administered to three groups of 15 young adults according to their COMT Val(158)Met genotype [Val/Val (VV), Val/Met (VM) and Met/Met (MM)]. Based on the theory of dual mechanisms of control (Braver et al., 2007), the Stroop task has been built to induce proactive or reactive control processes according to the task context. RESULTS Behavioral results did not show any significant group differences for reaction times but Val allele carriers individuals are less accurate in the processing of incongruent items. fMRI results revealed that proactive control is specifically associated with increased activity in the anterior cingulate cortex (ACC) in carriers of the Met allele, while increased activity is observed in the middle frontal gyrus (MFG) in carriers of the Val allele. CONCLUSION These observations, in keeping with a higher cortical dopamine level in MM individuals, support the hypothesis of a COMT Val(158)Met genotype modulation of the brain regions underlying proactive control, especially in frontal areas as suggested by Braver et al.
منابع مشابه
Modulating effect of COMT Val(158)Met polymorphism on interference resolution during a working memory task.
Genetic variability related to the catechol-O-methyltransferase (COMT) gene has received increasing attention in the last 15years, in particular as a potential modulator of the neural substrates underlying inhibitory processes and updating in working memory (WM). In an event-related functional magnetic resonance imaging (fMRI) study, we administered a modified version of the Sternberg probe rec...
متن کاملReduced brain activation during inhibitory control in children with COMT Val/Val genotype
INTRODUCTION Behavioral undercontrol is a well-established risk factor for substance use disorder, identifiable at an early age well before the onset of substance use. However, the biological mechanistic structure underlying the behavioral undercontrol/substance use relationship is not well understood. The enzyme catechol O-methyltransferase (COMT) catabolizes dopamine and norepinephrine in the...
متن کاملInfluence of COMT Genotype on Antero-posterior Cortical Functional Connectivity Underlying Interference Resolution.
Genetic variability related to the catechol-O-methyltransferase (COMT) gene (Val(158)Met) has received increasing attention as a possible modulator of executive functioning and its neural correlates. However, this attention has generally centered on the prefrontal cortices because of the well-known direct impact of COMT enzyme on these cerebral regions. In this study, we were interested in the ...
متن کاملInfluence of SLC6A3 and COMT variation on neural activation during response inhibition.
There is evidence concerning the neural and genetic correlates of inhibitory control, but there have been limited attempts to combine this information. This study tested the hypothesis that two dopaminergic polymorphisms, SLC6A3 and COMT, influence neural activation during response inhibition. Healthy adults were genotyped for these polymorphisms and performed a measure of response inhibition w...
متن کاملThe effects of gender and COMT Val158Met polymorphism on fearful facial affect recognition: a fMRI study.
The functional catechol-O-methyltransferase (COMT Val108/158Met) polymorphism has been shown to have an impact on tasks of executive function, memory and attention and recently, tasks with an affective component. As oestrogen reduces COMT activity, we focused on the interaction between gender and COMT genotype on brain activations during an affective processing task. We used functional MRI (fMR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cortex; a journal devoted to the study of the nervous system and behavior
دوره 50 شماره
صفحات -
تاریخ انتشار 2014